Monday, August 31, 2020

DSniff


"dsniff is a collection of tools for network auditing and penetration testing. dsniff, filesnarf, mailsnarf, msgsnarf, urlsnarf, and webspy passively monitor a network for interesting data (passwords, e-mail, files, etc.). arpspoof, dnsspoof, and macof facilitate the interception of network traffic normally unavailable to an attacker (e.g, due to layer-2 switching). sshmitm and webmitm implement active monkey-in-the-middle attacks against redirected SSH and HTTPS sessions by exploiting weak bindings in ad-hoc PKI." read more...

Website: http://www.monkey.org/~dugsong/dsniff/

More articles


Sunday, August 30, 2020

ShodanEye: Collect Infomation About All Devices Connected To The Internet With Shodan


About ShodanEye
   This tool collects all information about all devices that are directly connected to the internet with the specified keywords that you enter. This way you get a complete overview.

   Here you can read the latest article about Shodan Eye: Shodan Eye Ethical Hacking Tool Release

   The types of devices that are indexed can vary enormously: from small desktops, refrigerators to nuclear power plants and everything in between. You can find everything using "your own" specified keywords. Examples can be found in a file that is attached:

   The information obtained with this tool can be applied in many areas, a small example:
  • Network security, keep an eye on all devices in your company or at home that are confronted with internet.
  • Vulnerabilities. And so much more.
   For additional data gathering, you can enter a Shodan API key when prompted. A Shodan API key can be found here

Shodan Eye Ethical Hacking Tool Release
   Before we start the year 2020, today there is a new big release ..! Please note, if you have already installed Shodan Eye on your computer, then it is worthwhile to read it carefully. Of course, even if you don't know this Shodan tool yet:
  • Shodan Eye goes from Python 2 to Python 3
  • Save the output of the Shodan Eye results
  • The entry of the Shodan password is no longer visible.

About Shodan Search Engine
   Shoan is a search engine that lets the user find specific types of computers (webcams, routers, servers, etc.) connected to the internet using a variety of filters. Some have also described it as a search engine of service banners, which are metadata that the server sends back to the client.

   What is the difference between Google or another search engine: The most fundamental difference is that Shodan Eye crawls on the internet, Google on the World Wide Web. However, the devices that support the World Wide Web are only a small part of what is actually connected to the Internet.

Before use this tool, you should note that:
  • This was written for educational purpose and pentest only.
  • The author will not be responsible for any damage ..!
  • The author of this tool is not responsible for any misuse of the information.
  • You will not misuse the information to gain unauthorized access.
  • This information shall only be used to expand knowledge and not for causing malicious or damaging attacks.
  • Performing any hacks without written permission is illegal..!

ShodanEye's screenshots:

ShodanEye Installation
   If you're using GNU/Linux, open your terminal and enter these commands:

   If you're a Windows user, follow these steps to install ShodanEye:
  • Download and run Python 3.7.x setup file from Python.org. On Install Python 3.7, enable Add Python 3.7 to PATH.
  • Download shodan-eye-master.zip file.>
  • Then unzip it.
  • Open CMD or PowerShell window at the Osueta folder you have just unzipped and enter these commands:
    pip install shodan
    python shodan-eye.py

Video Shodan Eye on YouTube:

Contact to the author:


Related posts

Vlang Binary Debugging

Why vlang? V is a featured, productive, safe and confortable language highly compatible with c, that generates neat binaries with c-speed, the decompilation also seems quite clear as c code.
https://vlang.io/

After open the binary with radare in debug mode "-d" we proceed to do the binary recursive analysis with "aaaa" the more a's the more deep analys.



The function names are modified when the binary is crafted, if we have a function named hello in a module named main we will have the symbol main__hello, but we can locate them quicly thanks to radare's grep done with "~" token in this case applied to the "afl" command which lists all the symbols.


Being in debug mode we can use "d*" commands, for example "db" for breakpointing the function and then "dc" to start or continue execution.


Let's dissasemble the function with "pD" command, it also displays the function variables and arguments as well, note also the xref "call xref from main"


Let's take a look to the function arguments, radare detect's this three 64bits registers used on the function.


Actually the function parameter is rsi that contains a testing html to test the href extraction algorithm.


The string structure is quite simple and it's plenty of implemented methods.




With F8 we can step over the code as we were in ollydbg on linux.


Note the rip marker sliding into the code.


We can recognize the aray creations, and the s.index_after() function used to find substrings since a specific position.


If we take a look de dissasembly we sill see quite a few calls to tos3() functions.
Those functions are involved in string initialization, and implements safety checks.

  • tos(string, len)
  • tos2(byteptr)
  • tos3(charptr)

In this case I have a crash in my V code and I want to know what is crashing, just continue the execution with "dc" and see what poits the rip register.



In visual mode "V" we can see previous instructions to figure out the arguments and state.


We've located the crash on the substring operation which is something like "s2 := s1[a..b]" probably one of the arguments of the substring is out of bounds but luckily the V language has safety checks and is a controlled termination:



Switching the basic block view "space" we can see the execution flow, in this case we know the loops and branches because we have the code but this view also we can see the tos3 parameter "href=" which is useful to locate the position on the code.



When it reach the substr, we can see the parameters with "tab" command.



Looking the implementation the radare parameter calculation is quite exact.


Let's check the param values:


so the indexes are from 0x0e to 0x24 which are inside the buffer, lets continue to next iteration,
if we set a breakpoint and check every iteration, on latest iteration before the crash we have the values 0x2c to 0x70 with overflows the buffer and produces a controlled termination of the v compiled process.





More information